Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure.

نویسندگان

  • Feng R Luo
  • Zheng Yang
  • Amy Camuso
  • Richard Smykla
  • Kelly McGlinchey
  • Krista Fager
  • Christine Flefleh
  • Stephen Castaneda
  • Ivan Inigo
  • David Kan
  • Mei-Li Wen
  • Robert Kramer
  • Anne Blackwood-Chirchir
  • Francis Y Lee
چکیده

PURPOSE Chronic myeloid leukemia (CML) is caused by reciprocal translocation between chromosomes 9 and 22, forming BCR-ABL, a constitutively activated tyrosine kinase. Imatinib mesylate, a selective inhibitor of BCR-ABL, represents current frontline therapy for CML; however, emerging evidence suggests that drug resistance to imatinib may limit its long-term success. To improve treatment options, dasatinib (BMS-354825) was developed as a novel, oral, multi-targeted kinase inhibitor of BCR-ABL and SRC family kinases. To date, dasatinib has shown promising anti-leukemic activity in preclinical models of CML and in phase I/II clinical studies in patients with imatinib-resistant or imatinib-intolerant disease. EXPERIMENTAL DESIGN The pharmacokinetic and pharmacodynamic biomarkers of dasatinib were investigated in K562 human CML xenografts grown s.c. in severe combined immunodeficient mice. Tumoral levels of phospho-BCR-ABL/phospho-CrkL were determined by Western blot. RESULTS Following a single oral administration of dasatinib at a preclinical efficacious dose of 1.25 or 2.5 mg/kg, tumoral phospho-BCR-ABL/phospho-CrkL were maximally inhibited at approximately 3 hours and recovered to basal levels by 24 hours. The time course and extent of the inhibition correlated with the plasma levels of dasatinib in mice. Pharmacokinetic/biomarker modeling predicted that the plasma concentration of dasatinib required to inhibit 90% of phospho-BCR-ABL in vivo was 10.9 ng/mL in mice and 14.6 ng/mL in humans, which is within the range of concentrations achieved in CML patients who responded to dasatinib treatment in the clinic. CONCLUSIONS Phospho-BCR-ABL/phospho-CrkL are likely to be useful clinical biomarkers for the assessment of BCR-ABL kinase inhibition by dasatinib.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Role of JAK/STAT Pathway on Dasatinib-Induced Apoptosis for CML Cell Model K562.

We aimed to evaluate the cytotoxic and apoptotic effects of dasatinib (BMS-354825) on K562 chronic myeloid leukemia (CML) cells and to examine the roles of STAT genes on dasatinib-induced apoptosis. The results showed that dasatinib decreased proliferation and induced apoptosis in K562 cells in a dose- and time-dependent manner. mRNA and protein levels of STAT5A and STAT5B genes were significan...

متن کامل

Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib).

Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are key events in the pathogenesis of restenosis that undermine the long-term benefit of widely performed balloon angioplasty and stenting procedures. Platelet-derived growth factor (PDGF) is a potent mitogen and motogen for VSMCs and is known to play a prominent role in the intimal accumulation of smooth muscle cells....

متن کامل

Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis.

Mastocytosis is associated with an activating mutation in the KIT oncoprotein (KITD816V) that results in autophosphorylation of the KIT receptor in a ligand-independent manner. This mutation is inherently resistant to imatinib and, to date, there remains no effective curative therapy for systemic mastocytosis associated with KITD816V. Dasatinib (BMS-354825) is a novel orally bioavailable SRC/AB...

متن کامل

Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells.

Src family kinases (SFK) are currently being investigated as targets for treatment strategies in various cancers. The novel SFK/Abl inhibitor, dasatinib (BMS-354825), is a promising therapeutic agent with oral bioavailability. Dasatinib has been shown to inhibit growth of Bcr-Abl-dependent chronic myeloid leukemia xenografts in nude mice. Dasatinib also has been shown to have activity against c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 23  شماره 

صفحات  -

تاریخ انتشار 2006